All News

Much has been written over the years about the prevalence of HIV drug resistance mutations and about the fitness and transmissibility of resistant strains of virus and their present and potential impact on the HIV pandemic.

Although it bears his name, Guido Fanconi only defined the “syndrome” after it was first described by Lignac in 1924.1 Fanconi described children with rickets, glucosuria, and growth retardation.1 Fanconi syndrome now includes multiple disorders, with the common pathologic mechanism of proximal tubular dysfunction. This syndrome is a rare disorder, making it conspicuous when it does occur. Most cases in children are linked to inherited disorders, while those in adults are usually acquired, most commonly from multiple myeloma2 (due to immunoglobulin light chains in the urine) or drug-related toxicity.1 Recently, much attention has been paid to the occurrence of Fanconi syndrome as a result of exposure to the NRTI class of antiretroviral agents.3-5 In HIV-infected persons, Fanconi syndrome was initially associated with adefovir nephrotoxicity.3 Therefore, when the closely structurally related NRTI tenofovir was introduced, there was concern about a risk of nephrotoxicity similar to that of adefovir. Although no nephrotoxic events were reported in clinical trials,6,7 subsequent use in clinical practice revealed tenofovir-associated renal side effects. A recent review by Sax and colleagues8 details the renal effects of this agent, which include acute renal failure from acute tubular necrosis and isolated Fanconi syndrome. Although most of the case reports of acute renal failure in HIV-infected patients exposed to tenofovir have been described with Fanconi syndrome,9 this is possibly a result of publication bias. Because Fanconi syndrome was a well-recognized feature of tenofovir’s predecessor adefovir3 and because the syndrome is otherwise relatively rare, tenofovir was generally easy to identify as the culprit. The presence of Fanconi syndrome certainly confirms a diagnosis of tenofovir-induced injury. However, when acute renal failure is present without Fanconi syndrome, tenofovir still needs to be considered as the cause. The findings of the case reported by Brim and colleagues10 can be best appreciated through an understanding of proximal tubular function. Proximal tubular epithelial cells are the workhorses of the nephron; they have the highly important role of reabsorbing the electrolytes and small molecules that are filtered at the glomerulus. For example, the proximal tubule reabsorbs almost all of the 0.5 kg of filtered sodium daily-the equivalent amount of sodium in 2.5 pounds of table salt. This function is dependent on the cells’ ability to generate large amounts of energy through a very rich concentration of mitochondria. It is not surprising that small defects in energy generation could result in significant wasting of substances. Indeed, Fanconi syndrome is an instance of this. One of the most important energy-requiring steps is the action of the adenosine triphosphate (ATP)–requiring basolateral (blood side) sodium-potassium (Na+-K+) pump. Through the function of sodium-potassium ion exchange, the epithelial cell maintains very low intracellular sodium concentration. This provides a gradient for sodium to move into cells from the lumen through various apical transporters. Sodium reabsorption driven by the gradient is coupled with reabsorption of phosphate, glucose, and amino acids and, with excretion of hydrogen ions (H+), allows bicarbonate reabsorption. If the Na+-K+ pump does not function adequately, as occurs with proximal tubular mitochondrial dysfunction, the sodium gradient is reduced, and there is a loss of the cotransported phosphate, glucose, amino acids, and bicarbonate in the urine. The result is a proximal renal tubular acidosis (usually hypokalemic) with hypophosphatemia, glucosuria, and aminoaciduria (ie, Fanconi syndrome). Hypouricemia has also been seen, although its genesis is not understood.1 The occurrence of Fanconi syndrome with mitochondrial disorders is well described. Based on evidence of mitochondrial defects in the proximal tubule with adefovir toxicity,11,12 one proposed theory is that the structurally related tenofovir may cause Fanconi syndrome by similarly affecting mitochondrial function in the proximal tubule. Tenofovir secretion and accumulation in proximal tubule epithelial cells is detailed in the above-mentioned review by Sax and colleagues.8 Important to note is that not all the features of Fanconi syndrome need to be present simultaneously, and the presence of a partial syndrome is not uncommon. Certainly, any appearance of glucosuria in patients without diabetes suggests the presence of Fanconi syndrome. Hypophosphatemia may take longer to evolve with ample bone stores providing a reservoir for repletion. It is the loss of phosphate through this mechanism that will result in osteomalacia, as described in the Case Report presented by Brim and colleagues.10 The role of tenofovir in isolated hypophosphatemia is unclear. Hypophosphatemia has not been attributed to tenofovir in major trials. Two retrospective studies have evaluated hypophosphatemia in tenofovir-treated patients.13,14 Buchacz and colleagues13 reported phosphate blood levels less than 2.4 mg/dL (normal 3.0 to 4.5) in 15.1% and 6.7% of patients treated with and without tenofovir, respectively. In another study, hypophosphatemia (phosphate level less than 2.5 mg/dL) developed in 30.7% of patients who received tenofovir, compared with 22.1% who did not receive tenofovir.14 These differences did not reach statistical significance in either study. Not surprisingly, an elevated level of urinary 2-microglobulin, a small protein usually reabsorbed by the proximal tubule, was noted in the case reported by Brim and associates.10 How­ever, even in the absence of overt kidney dysfunction, recent studies have described high levels of 2-microglobulin associated with tenofovir treatment.15,16 This implies a possible subclinical tubular defect, but the clinical significance of this has yet to be established. Although not common, the presence of Fanconi-like features in a patient treated with tenofovir should be highly suggestive of a drug-related effect. Consideration should be given to drug discontinuation, regardless of the degree of renal impairment. In addition to frequent monitoring of kidney function by estimating glomerular filtration rates, those taking tenofovir should be assessed at the same time for proximal tubular dysfunction, by obtaining serum levels for phosphate and bicarbonate and urinary glucose and protein levels. While it is not always the case with associated renal failure, tenofovir-related tubular effects are revers­ible, and an early diagnosis will avoid complications, such as those seen in the case reported by Brim and colleagues.

HIV/AIDS-related pain remains a clinically challenging condition despite recent advances in treatment modalities. The existing data on pain in HIV-positive persons demonstrate a high prevalence, wide variability in clinical presentation, significant negative impact on health-related quality of life, and alarmingly inadequate assessment and management.

On a daily basis, both patients and providers are confronted with the complicated problem of pain. Unfortunately, pain is prevalent among persons infected with HIV-1 and is undertreated.2 Metaphorically, pain can be likened to sound. At the same decibel level, different persons will perceive the same level of sound as pleasant or unpleasant. At either end of the spectrum (ie, no sound and extreme noise), all who are not hearing-impaired will agree on how the sound is perceived. Likewise, in pain, at the extremes (no pain and excruciating pain), everyone will agree on how the level of pain is perceived. Like sound, what complicates our assessment of pain is that pain typically falls in the middle range, where many different variables affect both the physiology of the pain and the psychosocial perception of that pain.

A49-year-old woman was referred to the emergency department by her primary medical provider for complaints of 3 weeks of cough, pleuritic chest pain, fever, and night sweats. The patient reportedanorexia and weight loss of 9 kg (20 lb) during the past 4 months.

abstract: In the treatment of certain allergies, sublingual immunotherapy (SLIT) may represent an attractive alternative to subcutaneous immunotherapy (SCIT) because of its lower risk of systemic reactions. The most common adverse reactions are local symptoms, such as oral "itchiness." GI complaints, rhinoconjunctivitis, urticaria, and asthma are uncommon reactions to this therapy, and no fatalities have been reported. In contrast to SCIT, accelerated induction schedules for SLIT do not appear to be associated with an increased risk of systemic reactions. SLIT may present an opportunity for broadening the use of immunotherapy by extending it to patients who are not candidates for SCIT because they dislike injections, find the frequent visits to the physician's office inconvenient, or are concerned with the safety of SCIT. The optimal effective dose and dosing schedule need to be established before a cost-benefit analysis can be performed. (J Respir Dis. 2007;28(6):237-243)

* The role of inflammation is well established in theories describing atherosclerotic disease. Virtually every step in atherogenesis is believed to involve cytokines and other bioactive molecules and cells that are characteristic of inflammation. Studies have shown that an elevated level of CRP, which is a serum marker of inflammation, in the high-normal range (0.2 to 1.0 mg/dL) in apparently healthy adults increases the relative risk of cardiovascular disease by 1.5.1